II B.Tech - I Semester –Regular / Supplementary Examinations DECEMBER 2023

MECHANICS (MECHANICAL ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max. Marks			
UNIT-I								
1	a)	State and Prove Varignon's Theorem.	L2	CO1	4 M			
	b)	A circular log weight 1200 N and radius 18 cm is supported by a pair of brackets. One of which is shown in the Fig. The bar PN is hinged at P and held by string MN is 57 cm long to induce minimum tension at MN, determine the value of 2θ for equilibrium. Consider all contact surfaces smooth, also find the value of minimum tension.	L3	CO2	10 M			
OR								
2	a)	Stare and Prove parallelogram law of forces.	L2	CO1	4 M			
	b)	Three cylinders weighting 100 N each and of		CO1				
	0)	80 mm diameter are placed in a channel of 180	LJ		10 101			
		mm width as shown in Fig. Neglecting the						
		friction, determine the reactions at all the						

		points of contact with the channel.					
		A + + C + + + + + + + + + + + + + + + +					
UNIT-II							
3	Det	ermine the axial forces in the members of plane	L3	CO2	14 M		
	trus	s as shown in the figure					
		B					
		3 m 4 m 3 m					
		30 kN 30 kN 90 kN					
		OR					
4	a)	Determine the least value of P to cause motion	L3	CO2	10 M		
		to impend rightwards as shown in Fig. The					
		coefficient of friction for all contiguous					
		surfaces is 0.2 and consider pulley as frictionless.					
		D					
		O GON CON					
		90N month					
		155°					
	b)	Explain angle of repose and prove it is equal to	L2	CO1	4 M		
		angle of friction.	L		-T 1V1		
	UNIT-III						
5	a)	Determine the location of centroid of shaded	L3	CO3	7 M		
		area as shown in Fig.					

		UNIT-IV						
7	A stone is thrown vertically upward with a velocity			CO4	14 M			
	of 20 m/s from 25 m high tower top. Determine							
	i) t	ime required for stone to reach the ground.						
	ii) v	velocity of stone during downward movement at						
	the	level of point of projection iii) maximum height						
	read	ched during flight.						
	OR							
8	a)	A particle is projected with a velocity of	L3	CO4	7 M			
		40m/sec at an angle of 60° with the horizontal						
		from the foot of an inclined plane of inclination						
		30° . Find the time of flight and the range on the						
		inclined plane.						
	b)	A wheel, rotating about a fixed axis at 20 r.p.m.,	L3	CO4	7 M			
		is uniformly accelerated for 70 seconds, during						
		which time it makes 50 revolutions. Find:						
		(i) Angular velocity at the end of this interval,						
		and (ii) Time required for the speed to reach 100						
		revolutions per minute						
		UNIT-V						
9	a)	Derive the expression for work energy principle	L2	CO4	4 M			
		in case of rigid bodies.			1035			
	b)	A weight of 5 N is suspended by a light rope	L4	CO4	10 M			
		wound round a pulley of weight 50 N and radius						
		30 cm, the other end of the rope being fixed to						
		the periphery of the pulley. If the weight is						
		moving downwards, determine:						
		(i) Acceleration of the weight 5 N, and						
		(ii) Tension in the string. Take $g = 9.80 \text{ m/s}^2$.						
10		OR	T 4	004	10 3 4			
10	a)	A bullet of mass 81 gm and moving with a	L4	CO4	10 M			
		velocity of 300 m/s is fired into a block of wood						
		and it penetrates to a depth of 10 cm. If the						
		bullet moving with the same velocity, were fired						
		into a similar piece of wood 5 cm thick, with						
		what velocity would it emerge? Also find the						
	1-)	force of resistance, assuming it to be uniform.	10		4 1 7			
	b)	State D'Alembert's principle.	L2	CO4	4 M			